If it's not what You are looking for type in the equation solver your own equation and let us solve it.
122x^2+11x-15=0
a = 122; b = 11; c = -15;
Δ = b2-4ac
Δ = 112-4·122·(-15)
Δ = 7441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-\sqrt{7441}}{2*122}=\frac{-11-\sqrt{7441}}{244} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+\sqrt{7441}}{2*122}=\frac{-11+\sqrt{7441}}{244} $
| 4/5m-1/5m=9. | | (24-6t÷24-4t)=(2÷3) | | x/(x+1)=1.1 | | 3/5+.19x=4 | | 1.08(2t+2.50)+3=13.8 | | −1+6(7x+6)=(4x−4)+7 | | 2x-1=x+1/x2 | | 2x-1=(x+1)/x2 | | 9^x=52 | | -1/20g=20 | | 11-12=-q | | 5-5(5x-6)=-5 | | -4=1/3*3+b | | 2x+(3X-12)+x=180 | | 3x-5+5x=3(6x-4)+5 | | 3x^2=-x-1 | | 5r =6 | | 5m+24=m^2 | | B=30+6b | | 9.02+x=1.49 | | 40=1/2h(4+1) | | -12k=144 | | 5r+6+3=-16 | | 5r+6+3=16 | | (t+2)^2=0. | | 16x^2+81=81 | | (t+2)2=0. | | 5x-10=3x-50 | | x+4x+x+4x-45=180 | | (5x+7)(5x^2-31x+30)=0 | | m+1.04=3.1 | | |6x+3|+9=27 |